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Bogomolny Field Equations and the Double-
Complex Function Method

Jun-Fei Yang'
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The double-complex function method is applied to the Bogomolny field equations
of Yang — Mills — Higgs theory. We discuss how to generate a family of solutions
of the Bogomolny field equations with a double-complex Ernst potential. We
discuss the application of the Neugebauer — Kramer transformation, the double
Ehlers transformation, and noncommutativity. An example of a concrete
calculation is given.

1. INTRODUCTION AND PRELIMINARIES

Manton (1978) and Forgacs ez al. (1980) pointed out that in Yang—Mills—
Higgs theory, if we give the SU(2) gauge field W* and the Higgs field ®*
the axisymetric ansatz

O = (0, @1, ¢2), Wo = —(0, N1, N2)
we =W, 0,0), W= —(W,0,0)

(M

where @, p, z are the usual polar coordinates and @;, W;, n; are functions of
p, z only, then the Bogomolny field equations become

NP = C2@91 — Wag) = —(@m — Wim)lp

= C2(6002 + Wag1) = —(@m2 + Win)lp

N2 = Cooim — o) = p(@W1 — 8) (2)
P = C091 — Wig2) = (G — Wan)lp

\[‘12 — C*(0:02 + Wi1) = (62 + Wam)lp
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Further, Forgacs et al. (1981) pointed out that if ¢;, 1;, and W; are written as

JE—Cloi=-wi=Loy, ni=pm=-Lou
I I
1 (3)
E — gy = e M = f:. B f

then the Bogomolny field equations (2) are equivalent to the Ernst equation
of general relativity (Ernst, 1968)
Re(€)V*€ = Vé - V¢
V=g +p o+, V=(5,0) (4)
€ =f+iy
Recently, by the use of the above results, Singleton (1996) discussed the
Kerr-like solution for the Bogomolny fields and its physical behavior.

Zhong (1985, 1988, 1989, 1990a,b) extended the ordinary Ernst equation
to a double-complex form, and applied it to general relativity, soliton theory,
and self-dual SU(2) gauge fields. Here we apply the double-complex method
to the Bogomolny fields of Yang—Mills-Higgs theory. We discuss how to
generate the solutions for the Bogomolny field equations with the double-
complex method so the number of solutions for the Bogomolny field equations
is increased greatly. In particular, we can still use the double Ehlers transfor-
mation to get new solutions for the Bogomolny field equations, and the
method reflects a symmetry structure of the Bogomolny fields.

For convenience, we collect here some results concerning the double-
complex function method. Let J denote the double pure imaginary unit, i.e.,
J=i(i*=—1)orJ=¢g(e® =1, e # *1). If the a, are real numbers and
the real series X a, is absolutely convergent, then

©

a(J) = Zo anJ™" ®)

is called a double-real number. If a(J) and 5(J) are both double-real numbers,
Z(J) =a(J) +J - b(J) is called a double-complex number. Sometimes Z(J)
is written directly as a pair of dual complex numbers, i.e., Z(J) = (Z¢, Zn),
where Zc = Z(J = i), Zy = Z(J = ¢).

The double-complex Ernst equation is (Zhong, 1985)

Re(8()V*E(W) = V&) - V&), () =FJ)+J - QJ) (6)

The superiority of the double-complex Ernst equation lies in the fact that
when we find a solution é(J), we acquire an ordinary-complex solution and
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a hyperbolic-complex solution (€c, €x) = (Fc + iQ¢, Fy + eQu). For work
on this equation see, e.g., Zhong (1985, 1988, 1989, 1990a,b), Gao and Zhong
(1991, 1996), and Feng and Zhong (1996).

This paper is organized as follows: In Section 2 we examine how to
get four solutions for the Bogomolny fields by a double-complex Ernst
potential, and calculate an example. In Section 3 we discuss how to obtain
new families of solutions for the Bogomolny fields by the use of the double
Ehlers transformation and noncommutativity. In Section 4 we apply the
preceding method to a particular case, and use Weyl’s solution of general
relativity to generate new solutions for the Bogomolny fields. Section 5
contains a conclusion and discussion.

2. GENERATING THE SOLUTIONS OF THE BOGOMOLNY
FIELD EQUATIONS FROM A DOUBLE-COMPLEX
ERNST POTENTIAL

Suppose that a double-complex Ernst potential €(J) obeying Eq. (6) is
given. First, applying the ordinary-complex Ernst potential €c = Fc¢ + iQd¢
to Eq. (4), we can get a Bogomolny field solution (3). Then, for the hyperbolic
complex Ernst potential € = Fy + €Qy, we can turn it into the ordinary
Ernst potential 9 ¢ which is dual to €y by way of the Neugebauer—Kramer
(1969) transformation as follows: We use the notation in Zhong (1989) to
denote the transformation dy = (T, Wry,):

dHZ %H: FH+ SQHQQDC: Gc+ i@c
T: Fy—> Ge = T(Fy) = plFy (7)

Wry: Qu—> Q¢ = J _I% (0-Qpdp — 6,Qudz)
i
ie.,
30c =2 0.Q4  30c= 5504
FH FH

Now, from the %@ ¢ we obtain another solution (3). In addition, we note
that in general relativity, the two stationary axisymmetric gravitational field
solutions obtained from a double-complex Ernst potential €(J) and its conju-
gate double-complex Ernst potential €*(J) are actually equivalent. For the
Bogomolny fields, however, this is not so; in fact, the two Bogomolny
solutions corresponding respectively to €(J) and €*(J) are different. Thus
we can get four solutions for the Bogomolny fields from a known €(J). In
order to write out clearly the four solutions, we define a transformation £¢
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that changes the ordinary-complex Ernst potential €c into a Bogomolny
solution (¢;, Wi, M), according to Eq. (3), as follows:

Lo Ee = (@i, Wi, M) = Le(Ec)

1
\[‘12 — C*py = =W, =—0.Q¢, n = pw, = £ e (8)
FC FC
/12 — C’¢» 1

Fc
Furthermore, we define another transformation £y = £+ dy which turns
ahyperbolic-complex Ernst potential € x into another Bogomolny solution (¢;,
Wi, M:). Putting (7) into (8), we get the other Bogomolny solution for €y,

a:FCa N2 =

0
O F.
Fo P ¢

Pz En = (01, Wi, M) = Lu(€n)

~ - 1 ~ -
\[42 - C ¢ = W, = - 6pQH, n: = sz = 2 6ZQH (9)
FH FH

. 1 ~ L
£ — Cpy =— O.F 1 — 7 0yF
C o o H, M2 7, H

As a example, let us take (Zhong, 1985)

= J — 1 — JJa — _ — e_e + ee
<€) () 1 _1 , EJ) = ™Y, v coth 0 —e_e — 0
(10)

where © = 0(p, z) is a harmonic function, i.e., V0 = 0; o is a real constant;
and ™ = C[J;a] + J - S[J;a] is a double-exponential function, where the
double-cosine and the double-sine are defined, respectively, as

) :w 1 mom — \cosa, J =i
o] e (2n)!J ¢ {cosh a, J=¢g

(an

©

Sl = 3 mj o

1 2n2nt+l — sin a, J=1i
i J
Then

Y -1 -1 +J - 2SSl
eV + 1 P2+ 2]V + 1

€)=
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ie.,

B P2 B 28[L:o ¥
F) =gy 2] + 17 UH =gz y 2] + 1 (12

The four solutions of the Bogomolny field equations are as follows:
From

P2 _ 2sina'¥
CTHOTRE T L g cosa¥ 41 W2+ 2cos al + 1

we get

P — Clor = —W, = 1 5.0 2 sin o csch’0

Fe ’:‘P2+20050L\P+16:e
_ _ 0 _ __2psina csch’0
= P Fe Oplde Y2 4+ 2cosa¥ + 1 0 (13)
1

Ziz — C’p»

_ (2cos a¥? + 2¥ + cos a) csch?®
0.F¢

Fe P> —1D)P>+2cosa¥ + 1) o6

_0 _ _2p(cos a¥? + 2¥ + cos ) csch’®
LR OFe (P2 = )P+ 2cosa¥ + 1) %0

From €& = Fe — iQc, we get

: 2
I — C’or = —W, = 2 sin o csch™0

(P24 2cos oW + 1) o:6

= e = ‘P22+Si;z>sc:$e+ o0 14
o= bore- Gpatiat s mam
e -IS_C OpFe = 20((\(13102S fqu;(\;’rff 2+c§: Zco\i’) isc?;e %9
From
€y =Fy+ eQpy = P2 -1 2 sinh o'V

+
P2 4 2cosha® + 1 W2+ 2coshal + 1
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we get
=P = _-F%, 0L = _\Pfiﬁznilo?hc;cgi 60
| i Tl
I LCRIET e Tl
(15)
From €% = Fy — €¢Qy, we get
=~ Bt seage,

(2 cosh a2 + 2¥ + cosh o) csch?0
(P2 = D)(P? + 2cosha¥ + 1)

n2=1—-lf—apFH:1+ 8,0
H

3. GENERATING NEW SOLUTIONS FOR THE BOGOMOLNY
FIELD BY THE DOUBLE-EHLERS TRANSFORMATION

For a known double-complex Ernst potential, Zhong (1985) gave a
double Ehlers transformation u(J),

a()é(J) + Jb(J)
Je()EWJ) + dJ)

uJ): €J)—> EU) = (17)

where a(J), b(J), ¢(J), and d(J) are double-real constants, satisfy the condition
a())b(J)-J*b(J)e(J) = 1. Then é(J) still satisfies Eq. (6). Consider the
transformations uc = u(J = i) and uy = u(J = ¢) and the dual mapping
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dc = (T, Vr.) which changes an ordinary-complex Ernst potential €¢ into a
hyperbolic-complex Ernst potential %,

de: €c—> Dy = dc(éc) = Gu + Oy

T: Fe— Gy =T(Fc) = -;L (18)
C

VEe: Qc - ®H = VFC(QC) = J}% (—63chp + 6chdZ)

ie.,

000n = —50.Qc,  0.0,="5,Qc
Fe F¢

Note that d¢ is not the inverse of dy. In fact, it is easy to check that
dc + dy = * = dy - dc, where * is the complex conjugate operation.

Making use of uc, un, dc, du, Lc, and Ly, we can draw the following
diagram of the generating of Bogomolny field solutions from a double-
complex Ernst potential €(J) = F(J) + JQ(J):

~ Lu=Lcd, ~ ~ ~
(G, On) —(Gr, Op) 2T 60!, W1, Dy

de dy

(Fe, Qc) —““ > (Fe, Q) —— i, Wi, M)

(19)
~ Ly=Lcd, ~ >~
(F, Qu) —(Fpy, Qu) —==2 6, Wi, Ny
dy de
. % o e
(Ge, Oc) —*=—(Ge, Oc) —————dl, Wi, M)
It is easy to verify the noncommutativity of the following diagram:
Co— B+ & En — By + Bl
dcl dHT dﬁl dﬁ (20)
Uy ~ Uc ~
Dy ———n De ———c

uc # dgup-dc ug F deucdy
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Thus, by noncommutativity and the results in Section 2, from é(J) we can
get the following solution chains of Bogomolny equations:

y - 2y L = T
@&y (F& —Q8) ——=(01, Wi,
Fe
(@5, Wi, Ny < (Fe, —Qc) \({\\
(Fe, =Qc) —*< (@i Wi Mo

3 4 ) ’ L R - 7Y
/ (F& QO ——%, Wi M)©
(@i, Wi, Ny < (Fe, Qc) \(&\
(Fe, Qc) — < (@i, Wi, )0

A R %, o
Y (Bl Q) —— (@) WD

“
LN
(q)la VI/I, n )(1{) 77(FH5 QH) ¢ (/(‘ 0;\
(Fr, Q) — 2250, Wi, My
vl T —ﬁ’ 7& = T
< (Fi, ) (5L, Wi, M
<z \
(q)la W;, n )(H) 77(FH5 _QH) ((/(o;

(Fuo —Qu) — 2 (@i W M)
(21)

In the above chain every step may be carried out continuously. For example,

2 2
(F&L QS

A
f/ FN, QW \
’ FQ)

%, F&, Qo<
(Fc, Qo) <L (22)
(F&. Q&S
(F(C}Z) Q(l)
(8, 02)¢

Obviously, for an é(J), after n steps, we obtain 2° + 27 + - +
22 = 42" — 1) Bogomolny field solutions.
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4. THE SOLUTION FAMILIES OF THE BOGOMOLNY FIELDS
GENERATED BY THE WEYL SOLUTION

In general relativity there is a simple stdtiondry axisymmetric solution,
the Weyl solution, which is a real solution € = ¢ where h(p, z) is a harmonic
function, V?A = 0. In this case € = €c = € = e”". According to (8), the
solutions for the Bogomolny field equations correspondlng to éc = €¢ are

‘\Z42 - C2([)1 = =W =0, m =pWw, = 0
N/ C*p, = —0.h, M2 = poph

Similarly, according to Eq. (9), the solutions corresponding to €y = €% =

e are
N/ Clop=—-W, =0, Mm=pWr=0
£ = CPp, = 0.h, M =1 — poph
Now, let the double Ehlers transformation act on €(J),

a(NEWJ) + Jb(J) _ e" + Jb(dJ) = a(L)e())e™]
Je(J)é + d(J) d*(J) — J*P(J)e™

= F(J) + JQU) (25)
a())d(J) — J*b(J)e(J) = 1

(23)

(24)

u(J): €—>EU) =

From this we obtain
h h

N e - e
Fo=—"0""5—, Fy= ,
¢ dz + cke " d¥ — che? 26)
O, = bede — accece® O, = budy — aycye®
C d2c + c2ce2h > H a’2 _ c2 o2
The Bogomolny field solution obtained from €c = F¢ + iQ)c is
—2CCdceh
Zi2 2. _ __ZCcace
- C =W, = 0.h
* ! dé + ¢t
_ 2Ccdcg€
m = pWw = A2+ e Oph (27)

2 2h 2
5 5 _ cce — dc
\[4 - C = O-h
¢ d* + ¢t

;[d2c 2 e2h]

dC+ c2 2h 6Ph

N =
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The Bogomolny solution obtained from €y = Fy + eQy is

2cudue”
/12 _ Czq)l = —w, _%ﬁph

- dy — che
_ _ 2CHdH€hQ
nm =pw2 = Ay — e O:h (28)
dy + cie™
\Ez - CZ(PZ = dy — e O:h

dy + e

=1 - h
N2 dy — e P

Now, let another transformation dc - uc - dyact on €y. First, let dgact on €y,
dH. %H - @C GC + i C n (29)
e

Then let uc act on YD,

21 )
pel bedee™ — acecp

i
dze™ + cch2 dze + cch2

uc: De > %e = Ge + iOc =

(30)
Finally, let dc act on %¢; then we obtain dc-uc- du(€n),
de: 9 —> €
= F]’{ + SQH'
die? + czc[g2
= h (31)
e
+ € J [—2ccdep0:hdp + 2ccdc(POph — 1) dZ]
The Bogomolny field solution obtained from &l = de-uc-dy(€p) is
h
) ) _ _ 2CCdcg€ 63}1
\E P1 1 dre + cchz
2ccdepe’(1 — poph)
nmo=py =T - (32)

2 2h 2 2
dce™ + ccp

2 2h

2.2

> 5 _dce” — cep
\[4 - C = O.-h
P2 dre + cchz z



Bogomolny Field Equations 1827

. 202 + p(dze* — ctp?)

Oph
A2 + 2 P

N2 =
Here we can see indeed that the Bogomolny field solutions obtained from
€n = up(€n) and € = de-uc-du(€n) are different.
We have calculated the Bogomolny field solution family corresponding
to €c, €&, €, €¢E, uc(€c), uy(€n), and de-uc-dy(€y). The calculations are
similar for the other solutions in (21).

5. CONCLUSION AND DISCUSSION

The double-complex function method can be applied to the Bogomolny
field equations in Yang—Mills—Higgs theory. We can obtain four Bogomolny
field solutions from a known double-complex Ernst potential. In particular,
by a double Ehlers transformation combining noncommutativity again and
again, an infinite chain of Bogomolny field solutions can be generated. This
reflects that the Bogomolny fields have a dual symmetry corresponding to
the double Ehlers transformation group.

Using the method given in this paper, many results concerning the
double-complex Ernst equation can be applied to the discussion of Bogomolny
fields. The physical behavior of the Bogomolny field solutions generated
from the double-complex Ernst potential will be discussed elsewhere.
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